Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration
نویسندگان
چکیده
We investigated the effects of alkaline pH on developing osteoblasts. Cells of the osteoblast-like cell line MC3T3-E1 were initially cultured for six days in HEPES-buffered media with pH ranging from 7.2 to 9.0. Cell count, cellular WST-1 metabolism, and ATP content were analyzed. The three parameters showed a pH optimum around pH 8.4, exceeding the recommended buffer range of HEPES at the alkaline flank. Therefore, only pH 7.2, 7.4, 7.8, and 8.4 media were used in more elaborate, daily investigations to reduce the effects of pH change within the pH control intervals of 24 h. All parameters exhibited similar pH behaviors, roughly showing increases to 130% and 230% at pH 7.8 and 8.4, as well as decreases to 70% at pH 7.2 when using the pH 7.4 data for reference. To characterize cell differentiation and osteoblastic cell function, cells were cultured at pH 7.4 and under alkaline conditions at pH 7.8 and 8.4 for 14 days. Gene expression and mineralization were evaluated using microarray technology and Alizarin staining. Under alkaline conditions, ATF4, a regulator for terminal differentiation and function as well as DMP1, a potential marker for the transition of osteoblasts into osteocytes, were significantly upregulated, hinting at an accelerated differentiation process. After 21 days, significant mineralization was only detected at alkaline pH. We conclude that elevated pH is beneficial for the cultivation of bone cells and may also provide therapeutic value in bone regeneration therapies.
منابع مشابه
WST-assay data reveal a pH dependence of the mitochondrial succinate reductase in osteoblast-like cells
The data presented in this article are related to the research article entitled "Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration" (doi: 10.1016/j.bbrep.2017.02.001; (Galow et al., 2017) [1]). The water soluble tetrazolium (WST) proliferation assay detects the metabolic activity of the respiratory chain of cultured cells. The assay is based ...
متن کاملRapamycin promotes osteogenesis under inflammatory conditions
Chronic periodontitis, a common oral disease, usually results in irreversible bone resorption. Bone regeneration is a complex process between bone‑forming activity of osteoblasts and bone‑resorbing activity of osteoclasts, and still remains a challenge for physicians clinically. A previous study demonstrated that the mechanistic target of rapamycin signaling pathway is involved in osteogenic di...
متن کاملSurface properties and ion release from fluoride-containing bioactive glasses promote osteoblast differentiation and mineralization in vitro.
Bioactive glasses (BG) are suitable for bone regeneration applications as they bond with bone and can be tailored to release therapeutic ions. Fluoride, which is widely recognized to prevent dental caries, is efficacious in promoting bone formation and preventing osteoporosis-related fractures when administered at appropriate doses. To take advantage of these properties, we created BG incorpora...
متن کاملبررسی تاثیر ویتامین E بر تمایز آزمایشگاهی سلولهای بنیادی مزانشیم مغز استخوان رت بالغ به استئوبلاست طی تیمار همزمان با سدیم آرسنیت
Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs) to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کامل